$\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$: A New Phosphate of $\mathbf{M o}(\mathrm{IV})$

K. H. LII and J. J. CHEN
Institute of Chemistry Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
and S. L. WANG
Department of Chemistry, National Tsing Hиа University, Hsinchu, Taiwan, Republic of China

Received May 26, 1988; in revised form August 12, 1988

Abstract

A new Mo(IV) phosphate, $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$, has been discovered and characterized by means of single crystal X-ray diffraction. It crystallizes in the trigonal space group $R \overline{3} c$ with $a=8.6160(7), c=$ $22.075(3) \AA, Z=6, R=0.015, \mathrm{R}_{\mathrm{w}}=0.018, \mathrm{GOF}=1.613$ for 406 unique reflections with $I>2.5 \sigma(I)$. The framework of $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ is built of MoO_{6} octahedra, NaO_{6} trigonal antiprisms, and PO_{4} tetrahedra. Its structure is isostructural with $\mathrm{NaZr}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ and closely related to $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$. © 1989 Academic Press, Inc

Introduction

A large number of new compounds have been isolated and characterized in the system of $M-\mathrm{Mo}-\mathrm{P}-\mathrm{O}$ ($M=$ metal cation) containing Mo in oxidation states less than +6 , indicating the great ability of PO_{4} tetrahedra to form various frameworks with MoO_{6} octahedra. The investigation of the system $\mathrm{M}-\mathrm{Mo}(\mathrm{V})-\mathrm{P}-\mathrm{O}$ has shown the formation of $\mathrm{K}_{4} \mathrm{Mo}_{8} \mathrm{P}_{12} \mathrm{O}_{52}$ (1), $\alpha-, \beta$-, and $\gamma-$ $\mathrm{CsMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (2), and $M \mathrm{Mo}_{5} \mathrm{P}_{8} \mathrm{O}_{33}$ ($M=\mathrm{Li}$, Na, Ag) (3). The phosphates containing $\mathrm{Mo}(\mathrm{IV})$ have been observed in $\mathrm{MMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ ($M=\mathrm{Tl}, \mathrm{Rb}, \mathrm{K}$) (4) and the mixed-valence compounds $M \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}(M=\mathrm{Cs}, \mathrm{Rb}$, Tl) (5), $\mathrm{Cs}_{3} \mathrm{Mo}_{6} \mathrm{P}_{10} \mathrm{O}_{38}$ (6), $\mathrm{Cs}_{2} \mathrm{Mo}_{5} \mathrm{P}_{9} \mathrm{O}_{33}$ (7), and $\mathrm{NaMo}_{2} \mathrm{P}_{4} \mathrm{O}_{14}$ (8), in which $\mathrm{Mo}(\mathrm{IV})$ and Mo(III) are simultaneously present. Interestingly, several compounds exhibit metalmetal bondings. For example, $\mathrm{Cs}_{3} \mathrm{Mo}_{5} \mathrm{P}_{6} \mathrm{O}_{25}$
(9), $\mathrm{Cs}_{3} \mathrm{Mo}_{4} \mathrm{P}_{3} \mathrm{O}_{16}$ (10), and $\mathrm{Cs}_{3} \mathrm{Mo}_{5} \mathrm{P}_{7} \mathrm{O}_{24}$ (11) contain cubane-like $\mathrm{Mo}_{4} \mathrm{O}_{4}$ and $\mathrm{Mo}_{4} \mathrm{O}_{3} \mathrm{P}$ clusters each with six Mo-Mo bonds. A confacial bioctahedral $\mathrm{Mo}_{2} \mathrm{O}_{9}$ cluster with a Mo-Mo bond has been observed in $\mathrm{Mo}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ (12). The phosphates containing isolated Mo(III) only have also been found in $M \mathrm{MoP}_{2} \mathrm{O}_{7}$ ($M=\mathrm{Cs}, \mathrm{Rb}, \mathrm{K}$) (13) and $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ (14).

The $\mathrm{Mo}(\mathrm{IV})$ phosphates $M \mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (M $=\mathrm{Tl}, \mathrm{Rb}, \mathrm{K}$) have been unusual among molybdenum phosphates with respect to the corner-sharing $\mathrm{Mo}_{2} \mathrm{O}_{11}$ units in their framework. Since phosphates containing Mo(IV) only have been relatively rare, efforts have been made to add new members to the family of $M-\mathrm{Mo}(\mathrm{IV})-\mathrm{P}-\mathrm{O}$. In an attempt to prepare " $\mathrm{Na}_{2} \mathrm{Mo}_{3} \mathrm{P}_{4} \mathrm{O}_{17}$ " a new Mo(IV) phosphate has been discovered. In contrast to $M \mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}(M=\mathrm{Tl}, \mathrm{Rb}, \mathrm{K})$ which adopt a tunnel structure and are built
of $\mathrm{Mo}_{2} \mathrm{O}_{11}$ units, $\mathrm{P}_{2} \mathrm{O}_{7}$ groups and PO_{4} tetrahedra, the sodium compound has a markedly different structure and is composed of MoO_{6} octahedra, NaO_{6} trigonal antiprisms, and PO_{4} tetrahedra. We report in this paper the preparation and crystal structure of Na $\mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$.

Experimental

The starting materials used for preparation were $\mathrm{Na}_{2} \mathrm{MoO}_{4}(99.9 \%), \quad \mathrm{MoO}_{3}$ (99.9%), Mo (99.9%), and $\mathrm{P}_{2} \mathrm{O}_{5}(99.9 \%$). The title compound was first obtained as black chunky crystals in an attempt to prepare " $\mathrm{Na}_{2} \mathrm{Mo}_{3} \mathrm{P}_{4} \mathrm{O}_{17}$ " in a sealed fused silica tube at $1000^{\circ} \mathrm{C}$ for 4 days. Its stoichiometry was not known until a complete single crystal X-ray structure determination. Subsequently, a few reactions using appropri-

TABLE I
Summary of Crystal Data, Intensity
Measurement, and Structure Refinement Parameters for $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$

Crystal data	
Space group	$R \overline{3} c$
Cell constants	$\begin{aligned} & a=8.6160(7), c=22.075(3) \\ & \AA, \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \\ & V=1419.2 \AA \end{aligned}$
Z	6
Density (calcd)	$3.509 \mathrm{~g} / \mathrm{cm}^{3}$
Abs. coeff. (MoK α)	$32.0 \mathrm{~cm}^{-1}$
Intensity measurement	
$\lambda(\mathrm{MoK} \alpha)$	$0.70930 \AA$
Scan mode	$\omega / 2 \theta$
Scan rate	5.5% min
Scan width	$0.65^{\circ}+0.35^{\circ} \tan \theta$
Max $2 \boldsymbol{\theta}$	60°
Standard reflections	Three measured every 2 hr (no decay)
Reflections measured	889 total, 466 unique
Structure solution and refinement	
Reflections included	406 with $I>2.5 \sigma(I)$
Parameters refined	30
Agreement factors	$R=0.015, \mathrm{R}_{\mathrm{w}}=0.018$
GOF	1.613
$(\Delta \rho)_{\text {max }} ;(\Delta \rho)_{\text {min }}$	0.48; -0.39 e/ \AA^{3}

ate amounts of the starting materials were conducted at several different temperatures ranging from 850 to $1000^{\circ} \mathrm{C}$. However, powder X-ray diffraction patterns showed that the products were always contaminated with a small amount of MoO_{2} and NaMo_{2} $\mathrm{P}_{4} \mathrm{O}_{14}$ (8).

A black crystal having the dimensions of $0.08 \times 0.09 \times 0.09 \mathrm{~mm}$ was selected for indexing and intensity data collection. The unit cell parameters were obtained by leastsquares refinement of 25 reflections with 2θ ranging from 16 to 29°. Based on the statistical analysis of intensity distribution, systematic extinctions, and the successful solution and refinement of the structure, the space group was determined to be $R \overline{3} c$ (No. 167). The structure was solved by direct methods and refined by full matrix leastsquares refinement based on F values to R $=0.015, \mathrm{R}_{\mathrm{w}}=0.018$, and GOF $=1.613$. The occupancy factor for Na was initially refined but the resultant value indicated full occupancy. Subsequently it was learned that the structure was isostructural with $\mathrm{Na} \mathrm{Zr}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (15). The intensity data were corrected for absorption, Lorentz, and polarization effects. Atomic scattering factors and anomalous dispersion terms were taken from International Tables for X-ray Crystallography (16). Crystal data, intensity measurements, and structure refinement parameters are collected in Table I. Final positional and thermal parameters are listed in Table II. Selected bond distances and angles are given in Table III. ${ }^{1}$

Description and Discussion of the Structure

As shown in Fig. 1 the framework of Na $\mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ is composed of corner-sharing MoO_{6} octahedra, NaO_{6} trigonal antiprisms, and PO_{4} tetrahedra. Each MoO_{6} octahe-

[^0]TABLE II
Positional and Thermal Parameters FOR $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}{ }^{a, b}$

Atom	x	y		z
Na	0.0	0.0	0.0	$B(\mathrm{iso})\left(\AA^{2}\right)$
Mo	0.0	0.0	$0.14443(1)$	$2.06(9)$
P	$0.2891(1)$	0.2891	0.25	$0.37(1)$
O 1	$0.1917(2)$	$0.0250(2)$	$0.08676(8)$	$0.92(8)$
O 2	$0.0201(3)$	$-0.1813(3)$	$0.19315(9)$	$1.19(8)$

	Anisotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$					
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na	$3.4(1)$	3.4	$1.0(1)$	1.7	0.0	0.0
Mo	$0.50(2)$	0.50	$0.41(2)$	0.25	0.0	0.0
P	$0.50(3)$	0.50	$0.63(4)$	$0.21(3)$	$0.08(1)$	-0.08
O 1	$0.83(9)$	$1.63(9)$	$1.14(8)$	$0.70(7)$	$0.20(7)$	$-0.02(7)$
O 2	$2.0(1)$	$1.43(9)$	$1.36(9)$	$1.06(8)$	$-0.12(7)$	$0.64(7)$

${ }^{a} B$ (iso) is the mean of the principal axes of the thermal ellipsoid.
${ }^{b}$ The anisotropic thermal parameters take the form: $2 \Pi^{2}\left(h^{2}\left(a^{*}\right)^{2} U_{11}+\right.$ $\left.\cdots+2 h k a^{*} b^{*} U_{12}+\cdots\right)$.
dron shares its six corners with six PO_{4} tetrahedra. Similarly, each NaO_{6} trigonal antiprism is linked to six PO_{4} tetrahedra. Each NaO_{6} trigonal antiprism shares its opposite faces with two MoO_{6} octahedra (Fig. 2). Along a threefold axis the MoO_{6} and NaO_{6} polyhedra alternate in the following sequence . . . $/\left(\mathrm{NaO}_{6}\right)\left(\mathrm{MoO}_{6}\right)\left(\mathrm{MoO}_{6}\right)\left(\mathrm{NaO}_{6}\right)$ $\left(\mathrm{MoO}_{6}\right)\left(\mathrm{MoO}_{6}\right) / / . .$. The structure of

TABLE III
Selected Bond Distances (\AA) and Bond Angles (degree)

Bond distances		Bond angles	
$\mathrm{Na}-\mathrm{Ol}$	2.467(2) (6x)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 1$	180.0 (3x)
Mo-O1	$2.010(2)(3 \times$)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 1$	66.2(2) (6x)
Mo-O2	$1.974(2)(3 \times)$	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 1$	$113.8(1)(6 \times)$
$\mathrm{P}-\mathrm{O} 1$	1.527(2) (2x)	$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 1$	84.2(1) ($3 \times$)
$\mathrm{P}-\mathrm{O} 2$	1.520(2) (2×)	$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 2$	92.05(8) (3x)
		$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 2$	90.2(1) (3x)
		O1-Mo-O2	173.5(1) (3x)
		O2-Mo-O2	93.3(1) (3x)
		$\mathrm{Ol}-\mathrm{P}-\mathrm{Ol}$	109.4(1) (1×)
		$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	111.1(2) (2x)
		$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	106.2(2) (2×)
		O2-P-O2	112.9(1) (1×)
		$\mathrm{Na}-\mathrm{O} 1-\mathrm{Mo}$	90.23(7)
		Na-O1-P	126.2(1)
		Mo-O1-P	143.5(1)
		Mo-O2-P	154.7(2)

$\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ can be described as strings of MoO_{6} octahedra and NaO_{6} trigonal antiprisms directed along the c-axis which are linked together through PO_{4} tetrahedra. Each PO_{4} tetrahedron is linked with three neighboring strings. Each PO_{4} group shares two corners with two MoO_{6} octahedra within one of the three strings and two cor-

Fig. 1. (a) A stereoscopic view of the $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ structure along the c-axis. The $\mathrm{Na}, \mathrm{Mo}, \mathrm{P}$, and O atoms are represented by circles with a cross, a dot, a slash, and open circles, respectively. For clarity, only half of the unit cell content along the c-axis is shown in the figure. (b) A polyhedron representation of the $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ structure along the c-axis.
ners each with a MoO_{6} and a NaO_{6} polyhedron within a neighboring string. Oxygen 1 is simultaneously bonded to P, Mo, and Na atoms and the four atoms are coplanar. However, O 2 is only bonded to P and Mo atoms.

The structure of $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ is closely related to that of $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$, which is built of corner-sharing $\mathrm{Mo}(\mathrm{III}) \mathrm{O}_{6}$ octahedra, $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, and $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups. $\mathrm{NaMo}_{2} \mathrm{P}_{3}$ O_{12} can be deduced from $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ by simple replacement of the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups with NaO_{6} trigonal antiprisms, and the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups with PO_{4} tetrahedra. The framework of the sodium compound is formed of $\left[\mathrm{NaMo}_{2}\left(\mathrm{PO}_{4}\right)_{3}\right]_{\infty}$ slabs parallel to the (001) plane, which are stacked along the c-axis and mutually linked in such a way that the three PO_{4} tetrahedra in a slab unit share their corners with the MoO_{6} octahedra and the NaO_{6} trigonal antiprisms of an adjacent slab. Whereas in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$, the three PO_{4} tetrahedra in a slab unit share their corners

Fig. 2. A section of a string of MoO_{6} octahedra and NaO_{6} trigonal antiprisms connected through PO_{4} tetrahedra.
with the three other PO_{4} tetrahedra of a neighboring slab.

For each MoO_{6} octahedron two sorts of Mo-O bond distances are observed. The longer $\mathrm{Mo}-\mathrm{O}$ bonds correspond to the oxygen atom (O 1) common to a PO_{4} tetrahedron, a MoO_{6} octahedron, and a NaO_{6} trigonal antiprism. The shorter Mo-O bonds correspond to the oxygen atom $(\mathrm{O} 2)$ shared by a PO_{4} tetrahedron and a MoO_{6} octahedron. The MoO_{6} octahedron is distorted as shown by the $0-\mathrm{O}$ distances ranging from $2.697(3)$ to $2.870(2) \AA$. The octahedral distortion can be estimated by using the equation $\Delta=(1 / 6) \sum\left(\left(R_{\mathrm{i}}-\bar{R}\right) / \bar{R}\right)^{2}$ where $R_{\mathrm{i}}=$ an individual bond length and $\bar{R}=$ average bond length (17). The calculation result $\left(\Delta \times 10^{4}=0.82\right)$ shows that the distortion is almost identical with the $\mathrm{Mo}^{41}-\mathrm{O}$ octahedra in the mixed-valence compound Na $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{O}_{14}\left(\Delta \times 10^{4}=0.91\right)$, but much smaller than the $\mathrm{Mo}^{4+}-\mathrm{O}$ octahedra in $\mathrm{TlMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}\left(\Delta \times 10^{4}=11.2\right)$. The P atom is bonded to four oxygen atoms at two nearly equal distances (see Table III). The PO_{4} tetrahedron is slightly distorted as indicated by the $\mathrm{O}-\mathrm{O}$ distances ranging from $2.438(3)$ to $2.530(4) \AA$. The sums of bond strengths using the equations derived by Brown and $\mathrm{Wu}(18)$ led to +0.99 for Na and +4.28 for Mo, which is a little higher than the formal oxidation state +4 of Mo in this compound. The Na atom is bonded to six oxygen atoms at a distance of $2.467(2) \AA$ forming a regular trigonal antiprism with the edge lengths of 2.697(3) $\AA(6 \times)$ and $4.134(3) \AA(6 \times)$. It should be noted that the U_{11} and U_{22} values for the Na atom are much larger than the U_{33} value. The anomalously large thermal parameters suggest that the sodium atom is mobile. Hong showed that the network of $\mathrm{NaZr}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ contains empty interstitial space along the a-axis and the interstitial space satisfies the criteria for fast Na^{+}-ion transport (19). Large thermal parameters for the Na atom were also observed in $\mathrm{NaZr} \mathrm{P}_{3} \mathrm{O}_{12}$.

According to our knowledge $\mathrm{NaMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ has been unique in the system of $\mathrm{M}-\mathrm{Mo}-$ $\mathrm{P}-\mathrm{O}$ with respect to the isolated $\mathrm{Mo}(\mathrm{IV}) \mathrm{O}_{6}$ octahedra in its framework. Interestingly, the sodium compound adopts a drastically different structure from those of $\mathrm{MMo}_{2} \mathrm{P}_{3}$ $\mathrm{O}_{12}(M=\mathrm{Tl}, \mathrm{Rb}, \mathrm{K})$. It is one of the examples showing the effect of the size of the counter cation on the crystal structure. This structural study once again shows the great ability of PO_{4} tetrahedra to form a variety of frameworks with MoO_{6} octahedra.

Acknowledgments

Financial support for this study by the National Science Council and the Institute of Chemistry Academia Sinica of the Republic of China is gratefully acknowledged.

References

1. A. Leclaire, J. C. Monier, and B. Raveau, J. Solid State Chem. 48, 147 (1983).
2. $\alpha-, \beta-\mathrm{CsMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$: K. H. LiI and R. C. Haushalter, J. Solid State Chem. 69, 320 (1987); γ-CsMo ${ }_{2} \mathrm{P}_{3} \mathrm{O}_{13}$: J. J. Chen, K. H. Lii, and S. L. Wang, J. Solid State Chem. 76, 204 (1988).
3. K. H. Lil, D. C. Johnston, D. P. Goshorn, and
R. C. Haushalter, J. Solid State Chem. 71, 131 (1987).
4. A. Leclaire, J. C. Monier, and B. Raveau, J. Solid State Chem. 59, 301 (1985); A. Leclaire and B. Raveau, Acta Crystallogr. C 44, 226 (1988).
5. A. Leclaire, J. C. Monier, and B. Raveau, Acta Crystallogr. B 40, 180 (1984).
6. K. H. LiI and C. C. Wang, J. Solid State Chem., in press.
7. K. H. Lit, C. C. Wang, and S. L. Wang, to be published.
8. J. J. Chen, K. H. Lit, and S. L. Wang, J. Solid State Chem., in press.
9. K. H. Lif, R. C. Haushalter, and C. J. O’ConnOR, Angew. Chem. Int. Ed. Engl. 26, 549 (1987).
10. R. C. Haushalter, J. Chem. Soc. Chem. Commun., 1566 (1987).
11. S. L. Wang and K. H. Liı, J. Solid State Chem. 73, 274 (1988).
12. S. L. Wang, C. C. Wang, and K. H. Lii, J. Solid State Chem. 74, 409 (1988).
13. K. H. Lif and R. C. Haushalter, Acta Crystallogr. C 43, 2036 (1987); K. H. LiI, C. C. Wang, and J. J. Chfn, unpublished work.
14. A. Leclaire and B. Raveau, J. Solid State Chem. 71, 283 (1987).
15. L. Hagman and P. Kierkegaard, Acto Chem. Scan. 22, 1822 (1968).
16. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch, Birmingham (1974).
17. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
18. I. D. Brown and K. K. Wu, Acta Crystallogr. B 32, 1957 (1976).
19. H. Y-P. Hong, Mat. Res. Bull. 11, 173 (1976).

[^0]: ${ }^{1}$ A table of structure factors is available on request from the author.

